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S U M M A R Y  
A Cauchy problem for the Laplace equation is solved by analytic continuation of the space variables on the plane 
of the complex potential, thereby obtaining an explicit expression for the geometry of physical boundaries of interest. 
In an illustrative application to the inverse free boundary problem of electrochemical machining, the general solution 
comprises a closed-form description of a tool family which can be used to machine a prescribed workpiece. The method 
is extended to include the effects of variable electrolyte conductivity, and a general tool design procedure is suggested 
in which an analytic series with correct asymptotic behavior is used to represent the given workpiece geometry. 
Applications in other fields such as heat conduction and hydrodynamics are discussed. The inverted formulation 
described herein affords considerable advantage and generality in solving Cauchy problems which are encountered 
in engineering design. 

1. Introduction 

Free boundary problems for the Laplace equation which arise in ideal fluid flow, heat conduc- 
tion, and electrochemical machining are characterized by a boundary surface F0 along which 
both Dirichlet and Neumann boundary conditions must be satisfied. In the direct free boundary 
problem, the position of the free boundary Fo is not prescribed but must be determined in 
accordance with the given location of fixed boundaries; whereas in the inverse free boundary 
problem, the position of Fo is prescribed and the problem consists in locating the alternative 
positions for the fixed boundaries of the field. Depending upon the nature of the application, 
the fixed boundaries of interest may be either a family of equipotential lines Fo or a family of 
flux lines Fq,. Although the literature of inverse free boundary problems is much less extensive 
than that of the related direct problems, it is believed that in many cases the inverse problem 
is of greater practical interest since it comprises a direct approach to engineering design 
problems. 

The present investigation is concerned with the inverse free boundary problem of potential 
theory. Since this is recognized as a Cauchy problem for the Laplace equation, a solution can 
be found by analytic continuation of a function of a complex variable. A novel feature of the 
present method is analytic continuation of the space variables in the plane of the complex 
potential such that the fixed boundaries of interest are obtained explicitly. It is emphasized that 
in previous formulations of the problem, the fixed boundaries of interest can only be located by 
numerical search procedures or by finding the inverse of a complex function. Although the 
present procedure is applicable to free boundary problems and design problems of fluid flow 
and heat transfer, the inverse problem of electrochemical machining (ECM) is selected for the 
purpose of demonstration. It is found that the method described herein provides a direct means 
for determining the family of tool shapes which can be used to machine a desired workpiece 
geometry. 

A formulation of the inverse problem of ECM is followed by discussion of a solution by 
Krylov [9]. It is shown that it is preferable to reformulate the Cauchy problem on the plane of 
the complex potential. A very convenient general solution is obtained which serves as the basis 
of a suggested design procedure for ECM tools. It is found that the present method is easily 
extended to include the effects of variable electrolyte conductivity. Applications of the method 
to other free boundary and engineering design problems is discussed. 
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2. Formulation of the inverse problem of ECM 

Electrochemical machining is a process of metal erosion in which the anode is a workpiece 
from which metal is removed and the cathode is a shaped tool. An electric potential is applied 
across the gap between the tool and workpiece, and the electrolyte is pumped through the gap 
to remove the products of erosion. In most applications, a high rate of metal removal is 
maintained by feeding the tool toward the workpiece during the machining process, and a 
"steady" state is reached in which the worksurfaee maintains a fixed position in the reference 
frame of the moving tool. The steady-state worksurface resembles the tool shape, but is not 
precisely congruent. At high feedrates, the worksurface geometry is influenced by variations 
in electrolyte conductivity which result from variation in both the electrolyte temperature and 
the void fraction of liberated hydrogen gas. 

The literature of ECM is primarily devoted to experimental studies and mathematical models 
of the transport process which are based upon parallel current approximations such as those 
of Thorpe and Zerkle [14] or Loutrel and Cook [10]. The direct free boundary problem for 
the Laplace equation has been solved through conformal mapping (assuming constant 
conductivity) for a few special cases by Collett, Hewson-Browne, and Windle [1] and by 
Dietz, Gunther, and Otto [2], whereas Tipton [15] describes a finite difference procedure, 
and Kawafune, Mikoshiba, and Noto [8] suggest constructing an analogue model. The so- 
called cosine law of machining which appears extensively in the literature is a first order ap- 
proximation for the inverse free boundary problem which has been solved exactly by Krylov 
for some mathematically tractable geometries. The present discussion describes a general 
method for solving the inverse free boundary problem which is even applicable to cases with 
variable electrolyte conductivity. 
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Fig ure !. Geometry and boundary conditions for free boundary problem of electrochemical machining. 

A typical ECM geometry is shown in Figure 1 where the surfaces F o and F_ 1 which bound the 
workpiece and tool respectively are separated by an electrolyte filled gap. Although Fo and 
F_ 1 may be three-dimensional, the present discussion is limited to two-dimensional geometry. 
The shape of the leading surface of the tool may vary, but the sides of the tool usually become 
almost parallel to the feed direction at some distance back from the frontal gap and are some- 
times partially insulated. 
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The metal erosion process which occurs on the worksurface Fo is controlled by the current 
density distribution. Since the current flux is everywhere normal to Fo, the mass rate of metal 
removal is given by 

 ha. = , ok O) 

where @ is the electric potential, N is the outer normal of Fo, k is the electrolyte conductivity, 
and 2. is the electrochemical equivalent of the anode material. Thus, the erosion process produces 
a locally normal absolute velocity V~. of Fo as given by 

Va,- )~"/r a~ (2) 
p, ~N 

where Pa is the density of the anode material. The relative velocity of F0 with respect to the 
moving tool is obtained by vector addition of the normal cutting velocity Va, and the feed 
velocity which is equal in magnitude to the feedrate Vy but in the opposite direction. In steady 
state machining the relative velocity of Fo with respect to the tool must be everywhere tangent 
to Fo. Thus, it is necessary that Va, = Vy COS fl or equivalently 

Oq~ k2. 
- -  - cos fl (3) 

ON p~Vr 

where fl is the angle between the outer normal of Fo and the feed direction. 
In a steady state ECM process such as that of Fig. 1 the electric potential must satisfy the 

following partial differential equation 

k = 0  (4) 

and the boundary conditions 

~ b = - i  on F-1 

q5 0 and #q~ k~ (5) 
= - c o s / ~ o n r o  

where 4)=~/A~b, Afb is the potential difference between the electrodes, and the cartesian 
coordinates x and y and the normal coordinate t/have been non-dimensionalized with respect 
to the nominal frontal gap 

2,koA~ 
g o -  Vypa (6) 

There are two different problems to be distinguished: 
(1) The direct problem in which the tool shape F_ 1 is given and the unique worksurface Fo 

is to be determined. 
(2) The inverse problem in which the worksurface Fo is given and the family of tool shapes 

F~ is to be determined. To illustrate the infinite multiplicity of solutions for the inverse problem, 
suppose that the feedrate is moderate, and the electrolyte velocity is high enough to ensure a 
uniform electrolyte conductivity k throughout the gap. For the given worksurface F o any one 
of the equipotential lines F~ which lies in the gap between Fo and F_ 1 represents a prospective 
tool shape which can be used to produce the worksurface Fo. For example, the tool shape 
F-o.5 may be used to ECM the surface Fo at the same feedrate but with about half as much 
applied voltage as is necessary for the original tool shape F_ 1- The smaller the gap between 
F~ and F0, the smaller will be both the required potential difference A �9 and the power consumed, 
but for the same feedrate each of the tools F6 will produce the same steady state current density 
(3) on Fo. Of course, with a very small gap it would be difficult both to maintain a high electrolyte 
flow velocity and to avoid accidental contact of the electrodes. 

The present discussion concerns the inverse problem of two-dimensional ECM wherein the 
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geometry of the worksurface is prescribed in the form 

y = Y(x) on F o. (7) 

Assuming for the moment that the electrolyte conductivity is uniform, the potential function 
is harmonic and must satisfy both of the conditions 

er 
05 = 0 and ~ - =  cos fl on Fo (8) 

and the problem consists in finding the location of the equipotential lines F 4 which comprise 
the admissable tool family. It is noted that the following functions are also available from the 
prescribed data (7) and (8): 

h l = ~ - ( z )  on F o (9) 

h z = x ( z  ) on Fo (10) 

8x 
h 3 = ~ ( ' c )  on F0 (11) 

where r is an arc length parameter on Fo. 
Since the electric potential 05 satisfies the Laplace equation, the complex potential w = 05 + iff 

is an analytic function of z = x + iy in the physical z-plane. Additionally, the auxiliary complex 
variable [ = r + it/ is defined as shown in Figure 1 such that Fo lies along the real axis of the 
[-plane where it is parameterized by z which represents arc length in the physical plane. 

Both of the solution methods which are subsequently discussed make use of analytic continu- 
ation. Suppose that ~0 = # + iv is an analytic function of the complex variable y = t + is and that 

# = f ( t )  and ~# 0s - 9(t) (12) 

on the real axis Im (7)= 0 where f ( t )  and 9 (t) are given analytic functions. Then, by integration 
of a Cauchy-Riemann condition 

f' v = g(t)dt (13) 
o 

also on Im (7)= 0. Thus, the prescribed data (12) is sufficient to determine 09 within its region 
of existance where it may be expressed as 

~o (7) = f(7) + i .Io g 
(1 4) (~) d7 

which by inspection agrees with the data specified on the real axis. It is noted that in (12), 
f and g are real valued functions of a real variable, whereas in (14) they are complex valued 
functions of a complex variable. 

3. Analytic continuation on an auxiliary plane 

Krylov presents a general solution of the inverse problem of ECM by analytic continuation 
on the plane of a complex parameter, that is, in the form w = w (~) and z = z ({) where { = �9 + it/ 
is the auxiliary complex variable previously defined. This approach involves the solution of the 
two distinct Cauchy problems shown on the {-plane in Figure 2. First consider problem A 
wherein w([) corresponds to c9(7)in (14) and the prescribed data are 

05 = 0 and ~ -  = hl(~) on F o . (15) 

So in this case, the functions corresponding to f and g in (12) are 

f ( , )  = 0 and g(z)= -h i ( z )  (16) 
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PROBLEM B FOR z = z(~) 

on the real axis Im (0 = 0, and the solution of problem A is then given by 

w(~) : 0 - i  J~o hl(Od~" (17) 

Now consider problem B wherein z (0  corresponds to o(7 ) in (14) and the prescribed data are 

~x 
x = h2(z ) and ~qq = ha(z) on r o (18) 

or, equivalently 

f(z) = h2 (z) and g(z) = - ha (z) (19) 

on the real axis hn (0 =0. Then the solution of problem B is 

j; h3(Od~. (20) z ( 0 - -  h 2 ( 0 - i  o 

By this procedure, the solution is obtained in the form w = w(0 and z = z(0. It is now necessary 
to find the location in the z-plane of the equipotential curves Fo. Since z = z (0  is given by (20), 
it is first required that these curves be located in the ~-plane. Only in some very simple cases such 
as those discussed by Krylov is it possible to find an analytic expression for ~ = ~ (w) by inversion 
of the relationship (17) for w = w(0. In general it is difficult to locate the equipotential curves in 
the ~-plane and a numerical search procedure is required. 

4. Inverted Cauchy problem by analytic continuation 

The present approach to the inverse free boundary is based upon a property of harmonic 
functions which has been used previously, for example by Thorn and Apelt [13], to solve 
boundary value problems. If q~ and 0 are conjugate functions in the z-plane, then x and y are 
conjugate functions in the w-plane. Since the equipotential free boundary fo  is parameterized 
by 0, it is necessary to state the inverted Cauchy problem in the plane of the complex variable 
w*= O+iq~ as indicated in Figure 3, and because the prescribed curve Fo is most naturally 
given as y = Y(x), it is very convenient to work with the dependent variable z*=  y +  ix. By 
differentiating z* [~ (w*)], 

and in view of (8), and the Cauchy-Riemann conditions it is obtained that 

~y _ ax 
~?r 1 and ~ - =  1 on F o 

(21) 

(22) 
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Figure 3. Cauchy problem on the inverted plane. 

q) 

whereby, without loss of generality 

x = 0 on t o .  (23) 

Thus, the Cauchy problem for z* (w*) isdefined by 

Oy 
y = Y(0) and ~ = - 1  on F o (24) 

or, by the notation of (12), 

f (0)  = Y(O) and 9 (0 )=  1 (25) 

on the real axis Im (w*)= 0, and the solution is obtained from (14) as 

z* (w*) = Y(w*)+ i~b- ~b. (26) 

Thus, the equipotential curves Fo are obtained explicitly by simply selecting a value for ~b and 
mapping out x and y as functions of the parameter ~. For example, if the free boundary F 0 is 
prescribed as 

-- Y(x) = �89 2 -  1) (27) 

the solution becomes 

y + i x  = [O2_(~b+ 1)2]/2+i~ (q~+ 1) (28) 

which describes the family of parabolic tool shapes shown in Figure 4. Any one of the equi- 
potential curves which lies above F 0 (including the semi-infinite flat plate along the y-axis) can 
be used as a tool shape for machining the concave parabolic surface Fo, whereas by reversing 
the polarity on the equipotentials which lie below F0 it is possible to produce a convex work- 
surface of the same shape. 

By reformulating the Cauchy problem on the inverted plane, the family of tool shapes is 
obtained explicitly without any need for numerical search or finding the inverse of an analytic 
function. This is one of the features of the present method which is advantageous in practical 
tool design applications. 

5. Application to ECM tool design 

A general procedure for ECM tool design is based upon the above solution (26) of the inverse 
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Figure 4. Tool family for worksurface prescribed as Y ( x )  = (x  2 - 1)/2. 

problem for z* (w*). Although the desired workpiece geometry Y(x) is quite arbitrary, there are 
several considerations which restrict the class of admissible curves. 

a. Only analytic worksurfaces can be produced by ECM, that is, the process will not re- 
produce discontinuities in derivatives of the tool surface. 

b. The equipotential curves of the solution should include tool shapes which have practical 
application in a conventional ECM process. For example, if the worksurface Fo is to be machined 
by an asymptotically straight-sided and equipotential tool, y must increase asymptotically 
with x2/2 on/'0 ; or if the tool is to be partially insulated, F0 must be asymptotically parallel to 
the feed direction. Thus, the prescription of F0 should be compatible with the asymptotic 
behavior produced by some reasonable tool shape. 

c. For smooth F0, the equipotential curves which lie near F0 can usually be interpreted 
as acceptable tool shapes, but the curves which lie far away may be cusped or looped as discussed 
by Krylov. This behavior is not a consequence of the present method but is characteristic of 
the Cauchy problem for the Laplace equation as discussed by Garabedian [5]. 

d. In engineering applications, the worksurface is prescribed by data points or connected 
line segments which may not conform to the above requirements for smoothness and asymptotic 
behavior. Even if the analytic continuation were to be undertaken by finite difference methods 
such as those described by Garabedian and Lieberstein [7] or Frank [4], it would be best to 
begin by constructing an analytical approximation of the prescribed data which meets these 
requirements. 

In view of the above considerations, it is appropriate to pursue a tool design approach which 
replaces the arbitrarily prescribed worksurface Y(x) with a series approximation ~(x) by 
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analytic functions. For example, the series 
N M 

Y(x) = aoq-lx  2 q- ~, • anmX(n-1)e -rex (29)  
n = l  m = l  

is sufficiently general to represent a wide variety of worksurfaces which can be machined by 
equipotential tools which are asymptotically straight-sided. For a desired worksurface Y(x), 
the coefficients of (29) can be determined by least squares regression, then the resulting analyt- 
ical approximation is substituted into the general solution (26), and the location of the ap- 
propriate tool shapes F4 is found by direct numerical computation. Preliminary test calculations 
indicate that this procedure provides very good results for tool shapes such as those of Figure 1. 

Thus, the tool design problem becomes one of selecting an approximating series which is 
sufficiently general and has the correct asymptotic behavior for a particular application. It is 
clear that the procedure outlined above can be easily programmed for a digital computer and 
that the simplicity of the general solution z* = z* (w*) prevents computational difficulties which 
would otherwise be encountered. 

6. The inverse problem with variable electrolyte conductivity 

At high feed rates, the ECM gap geometry is influenced by the variation in effective electrolyte 
conductivity which results from variations in both the void fraction of hydrogen gas and the 
temperature of the electrolyte. In such cases, a very adequate approximation is provided by 
a one-dimensional two-phase flow model such as that of Fluerenbrock, Zerkle, and Thorpe [3] 
which accounts for property variations in the direction of electrolyte flow, or equivalently in 
the ~b direction of the w*-plane. Since the liquid mass flow rate ~ / i s  constant along the gap, 
both the bulk temperature Tb and the mass fraction of hydrogen gas ~ = rhg/m I increase linearly 
with the current parameter ~b. Furthermore, empirical relations express the effective electrolyte 
conductivity as a function of T b and the volume fraction of hydrogen gas ~' = ~vo/v I where v 9 
and v I are the specific volumes of each phase; that is, k = k (Tb, ~'), and ~ '= ~' (~, Tb, p) where 
p is the pressure. Thus, if the pressure distribution is given, the effective conductivity k becomes 
an explicit function oftp. Using the physical model formulated by Thorpe and Zerkle [-14-] and 
assuming constant pressure, it is found that 

k 
kO 1+C1~1-[-C2~12-[-C303+... (30) 

where the coefficients C's depend upon physical constants and process parameters which are all 
independent of the geometry of the gap. 

With k/ko being a furiction of 0 only, it is easy to show that q5 still satisfies the Laplace equation 
as does its conjugate 0. Hence, the inverse problem statement is the same as before except that 
x = X (~b) on Fo where 

f *k X(0) = o ko (0)dO on Fo (31) 

and since y = Y(x) on Fo, or equivalently 

y = YEX(4,)] onF0  (32) 

the solution is given by 

z* = Y[X(w*)]  +iX(w*) (33) 

which again poses no computational difficulties. Thus, by formulating the inverse problem on 
the w*-plane, the difficulties usually associated with variable conductivity become much more 
tractable. 

7. Other applications 

Inverse free boundary problems arise not only in connection with direct free boundary problems, 
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but in more general applications as well. Since inverse problems consist in finding the location 
of an unknown field boundary (Fr or 1"o) along which only one boundary condition is to be 
maintained, they are usually encountered in a design context. Thus, the present inverted formu- 
lation of a Cauchy problem is particularly suitable for a variety of engineering design problems. 

Inverse problems of conduction heat transfer are characterized by a given boundary along 
which both the temperature and the heat flux distribution are specified. For example, the 
problems of porous cooling and radiation melting described respectively by Goldstein and 
Siegel [-7] and Siegel [ 12] have the same boundary conditions on the free surface as the preceding 
application to ECM, whereas in the steady state freezing problem considered by Miller and 
Jiji [11] the flux distribution on the isothermal phase interface is taken from the Pohlhausen 
solution of the boundary layer equations. Inverse problems of potential flow involve a given 
streamline along which the pressure (or velocity) distribution is prescribed, as for example in 
the problems of free surface flow and flow through a nozzle which are described by Garabedian 
and Frank respectively. 

8. Conclusions 

Inverse free boundary problems which comprise Cauchy problems for the Laplace equation 
are encountered in various areas of engineering design. An inverted solution by analytic 
continuation as described herein provides an explicit expression for the geometry of physical 
boundaries of interest, thereby eliminating any need for numerical search or finding the inverse 
of an analytic function. The method can be generally applied by constructing a series approxi- 
mation with correct asymptotic behavior to represent the given boundary along which Cauchy 
data is prescribed. These features of the present method are advantageous in formulating 
general design procedures like the one described herein for ECM tool design. 
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